1. In our discussion on shocks, we derived an expression for the shock speed for a right-moving shock as

\[S = u_R + c_R \sqrt{\left(\frac{\gamma + 1}{2\gamma} \right) \left(\frac{p_*}{p_R} \right) + \left(\frac{\gamma - 1}{2\gamma} \right)} \]

by moving into the frame of the shock

\[\hat{u}_* = u_* - S \]

\[\hat{u}_R = u_R - S \]

and applying the jump conditions:

\[\rho_* \hat{u}_* = \rho_R \hat{u}_R \]

\[\rho_* \hat{u}_*^2 + p_* = \rho_R \hat{u}_R^2 + p_R \]

\[\hat{u}_* \left(\rho_* e_* + \frac{1}{2} \rho_* \hat{u}_*^2 + p_* \right) = \hat{u}_R \left(\rho_R e_R + \frac{1}{2} \rho_R \hat{u}_R^2 + p_R \right) \]

Here, we will derive some related expressions that will be very useful later.

- We begin by seeking an expression for the density ratio in terms of the pressure ratio. Using Eqs. 4 and 5, eliminate the velocities in the energy expression in favor of the pressures and densities to get:

\[e_* - e_R = \frac{1}{2} \left(\frac{p_* - p_R}{\rho_* \rho_R} \right) \]

This relation is called the Hugoniot equation for the shock. It relates all the points in the \((\rho, p)\) plane that can be connected by a shock wave.

- Now, assuming a gamma-law equation of state, solve for the density ratio in terms of the pressure ratio to yield:

\[\frac{\rho_*}{\rho_R} = \frac{p_* + p_R}{\gamma - 1} \frac{\gamma + 1}{\gamma + 1} \]

• Now we want to compute the post-shock velocity, \(u_*\). From the Eq. 4 and Eqs. 2 and 3, show that

\[u_* = \left(1 - \frac{\rho_R}{\rho_*} \right) S + \frac{\rho_R}{\rho_*} u_R \]

and substitute in Eq. 1 and Eq. 8 to get the expression for the post-shock speed in terms of the pressure ratio:

\[u_* = u_R - \frac{2c_R}{\sqrt{2\gamma(\gamma - 1)}} \frac{1 - \frac{p_*}{p_R}}{\sqrt{1 + \frac{\gamma + 1}{\gamma - 1} \frac{p_*}{p_R}}} \]

We will make use of this expression in class when computing the solution to the Euler equations.
2. (from Choudhuri) The jet coming out of a galaxy pushes the surrounding gas away and creates a channel through which the light gas inside the jet flows. The pressure inside the jet has to be equal to the pressure outside. Assuming the flow inside the jet to be one-dimensional and adiabatic, show that the local Mach number at a place of pressure p is given by

$$M^2 = \frac{2}{\gamma - 1} \left[\left(\frac{p_0}{p} \right)^{(\gamma - 1)/\gamma} - 1 \right]$$

where p_0 is the stagnation pressure, i.e. the pressure that gas would have at a point if the velocity were zero there. Show that the cross-section A of the jet channel varies with the pressure p as

$$A \propto \left(\frac{p_0}{p} \right)^{(1/2)(1+1/\gamma)} \left[\left(\frac{p_0}{p} \right)^{(\gamma - 1)/\gamma} - 1 \right]^{-1/2}$$